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Abstract
Quantum coherent transport through open mesoscopic Aharonov–Bohm rings (driven by static
fluxes) have been studied extensively. Here, by using quantum waveguide theory and the
Floquet theorem we investigate the quantum transport of electrons along an open mesoscopic
ring threaded by a time-periodic magnetic flux. We predicate that current density waves could
be excited along such an open ring. As a consequence, a net current could be generated along
the lead with only one reservoir, if the lead additionally connects to such a normal-metal loop
driven by the time-dependent flux. These phenomena could be explained by photon-assisted
processes, due to the interaction between the transported electrons and the applied oscillating
external fields. We also discuss how the time-average currents (along the ring and the lead)
depend on the amplitude and frequency of the applied oscillating fluxes.

1. Introduction

Recently, the subject of time-dependent transport of electrons
through various nanostructures has attracted increasing
attention. This topic is concerned with certain controllable
transport phenomena, which have potential applications to
various nano-electronic devices [1].

In the time-dependent driving process, the applied external
oscillating perturbations affect the phase factors of the
wavefunctions in different regions, inducing the well-known
photon-assisted tunneling (PAT) [2]. Basically, PAT is a
process in which an oscillating potential can lead to energy
exchanges between the electrons and energy quanta (photons)
of the applied oscillating field, and thus yield the desirable
electron tunnelings. For example, an harmonically driven
potential could result in energy exchange between the electrons
and the applied external field in units of ‘photon’ quanta
h̄ω, with ω being the modulating frequency of the applied
harmonic field. Consequently, electrons inputting at energy E
can be transferred to sidebands with energies E ± nh̄ω (n =
0,±1,±2, . . .).

Experimentally, PATs had been observed in terms of
resonant tunnelings through certain electronic structures,

such as quantum wells [3], quantum dots [4], quantum
diodes [5], and semiconductor superlattices [6]. In fact,
PATs had been utilized to design various high-speed switching
devices and high-frequency radiation sources and detectors [5].
More recently, it is theoretically predicted that PATs could
also reveal in current nano-scale structures, e.g. spinor
quantum wells [7, 8], mesoscopic hybrid systems [9], carbon
nanotubes [10–12], graphenes [13, 14], etc.

Typically, the studies of electronic transports in meso-
scopic rings threaded by time-dependent fluxes are relatively
new [15]. It is expected that electronic transports along these
topologically nontrivial structures could reveal certain new
phenomena. For example, Shin and Hong [16, 17] discussed
the transport of electrons along a nanostructure of connected
double-rings with two leads; each ring is threaded by both
static and dynamically changed fluxes. They showed that
electron pumping could be implemented by using the PAT
along such a double-ring structure, and also the generated PAT
process could be utilized to filter the momentum of transported
electrons.

In the present work, we consider the PAT process through
an open mesoscopic ring driven by a time-periodic flux and
coupled to a reservoir via an ideal one-dimensional metal lead.
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This structure driven by only the static flux has already been
investigated [18, 19]. In this case the reflection probability
of the electrons (injected from the reservoir and reflected by
the ring) in the lead is always equal to one, and thus the
current in the lead is zero. This indicates that the applied
static flux does not influence the electron transporting along the
lead. However, when the ring is threaded by time-dependent
magnetic flux, the current might appear between the reservoir
and the open ring. For example, Arrachea et al [20] showed
theoretically that a tunneling current appears when the ring is
threaded by a linearly varying flux. In particular, under the so-
called few-sideband approximation (i.e. only a few sidebands,
for example the lowest three sidebands, were considered),
Büttiker [21] had originally treated the case wherein the ring
is threaded by a time-periodically changed flux.

Here, without making use of any approximation we
exactly treat such a problem in the framework of Floquet
scattering theorem [22–25] and time-dependent quantum
waveguide theory [26–30]. Various inelastic scatterings
between photon sidebands (i.e. scattering channels) will be
completely considered. Our numerical results show very
clearly that the current flowing along the lead indicates the
appearance of PAT phenomena. How the amplitude and
frequency of the applied oscillating fluxes influence these PAT
phenomena is also discussed.

2. Model

The nanostructure we consider here is shown in figure 1, where
a single open mesoscopic ring is driven by both the static
and dynamic fluxes and coupled to a reservoir via a lead. To
simplify it, we neglect electron–electron and electron–phonon
interactions. Therefore, the motion of electrons along the
lead is free, while that in the ring region is described by the
Hamiltonian

H (x, t) = − h̄2

2me

[
∂

∂x
− i

2π

L
�(t)

]2

= H0(x) + V (x, t),

(1)
where me is the mass of the electron, L is the circumference
of the ring, and �(t) = fs + fd cos(ωt) is the oscillating
magnetic flux expressed in units of the flux quantum h/e, with
fs being the static component and fd being the amplitude of the
dynamic component. The oscillating flux fd cos(ωt) affects
the transport properties of the ring in the same way as the
oscillating potential in the potential structures, and simulates
the process of phase-coherent inelastic scattering [31].

The solutions to the time-dependent Schrödinger equation
with the above Hamiltonian (1) can be obtained by using
the well-known Floquet theorem [25], a temporal version of
the Bloch theorem. This theorem says that the wavefunction
�(x, t) of a periodically driven quantum system could be
formally represented as

�(x, t) = e−iEflt/h̄φ(x, t), φ(x, t) = φ(x, t + 2π/ω),

(2)
with Efl being the so-called Floquet energy. Substituting
�(x, t) into the time-dependent Schrödinger equation gives

Figure 1. Schematic diagram of a mesoscopic one-dimensional
normal conductor ring driven by a time-periodically changed flux
and coupled with a reservoir via an ideal one-dimensional lead:
�(t) = fs + fd cos(ωt). Energies of the incoming and outgoing
waves (sidebands) are represented in terms of the Floquet zones with
the unit of h̄ω. En denotes the sub-sidebands in the lead, while Em

represents the sub-sidebands in the ring.

rise to an eigenvalue equation

Eflφ(x, t) =
[

H (x, t) − ih̄
∂

∂ t

]
φ(x, t). (3)

Furthermore, it is assumed that the function φ(x, t) can
be written as a time–space separable form, φ(x, t) =∑

k ak fk(t)gk(x), with gk(x) being the wavevector-dependent
functions required to be determined later, and

fk(t) = e− i
h̄ [εt−αk sin(ωt)+ r

2ω
sin(2ωt)]. (4)

Here, ε = h̄2k2/(2me) + r − Efl, r = π2h̄2 f 2
d /(me L2),

and αk = 2kπ h̄2 fd/(me Lω). The periodic characteristic of
φ(x, t), i.e. φ(x, t) = φ(x, t + 2π/ω), yields

fk(t + 2π/ω) = fk(t)e
− iε2π

h̄ω . (5)

This constrains the values of the effective energies and relevant
wavevectors as: ε = mh̄ω and h̄km = √

2me(Efl + mh̄ω − r),
respectively. Here, m is an integer marking the Floquet
sidebands. The negative integer m corresponds to the so-
called evanescent modes [32], which do not contribute to the
current on the lead. However, these modes should be taken
into account in treating the present system containing various
inelastic scatterings.

Expressing the time-dependent parts in terms of Bessel
functions, exp[z(μ − 1/μ)/2] = ∑

n Jn(z)μn, with Jn(z)
being the ordinary Bessel function of order n [33], the
wavefunction in the ring region takes the form:

�R(x, t) =
∑
m,n,l

[ameiK +
m x + bm(−1)m−ne−iK −

m (x−L)]

× Jm−n+2l

(
αk

h̄

)
Jl

(
r

2h̄ω

)
eiF(t). (6)

In this equation, F(t) = −(Efl + nh̄ω)t/h̄ and K ±
m =

km ± 2π fs/L. Since electrons incident to the oscillating
region could be scattered into different Floquet sidebands, the
wavefunctions outside the ring must be composed of a series of
Floquet sidebands in order to match the boundary conditions
at the junction. We assume that the particle waves of the lead
are the superpositions of an infinite number of sidebands with
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energies spacing with h̄ω. The potential in the lead is zero, so
the wavefunction on it can be written as

�L(x, t) = eiq0 x e−iEi0 t/h̄ +
∑

n

rn0e−iqn x e−iEn t/h̄ . (7)

Above, rn0 is the reflection probability amplitude of
incoming waves from the left lead to the ring. The above
equation also involves modes with energies below Ei0 (in the
sum, n can be negative). The evanescent modes (with En < 0)
neither propagate nor contribute to the transported currents,
as the wavevectors qn =

√
2me En/h̄2 of these modes are

imaginary.
The unknown coefficients in the above wavefunctions

can be determined by using the boundary conditions of the
wavefunctions, i.e. they and their first derivatives must be
continuous at the junction. Thus, at the junction we have
�L(0, t) = � R(0, t) = � R(L, t), ∂�L(x, t)/∂x |x=0 =
∂� R(x, t)/∂x |x=0 − ∂� R(x, t)/∂x |x=L . These boundary
conditions yield

δn0 + rn0 =
∑
m,l

[am + bm(−1)m−neiK −
m L ]J

=
∑
m,l

[ameiK +
m L + bm(−1)m−n]J, (8)

and

qnδn0 − qnrn0 =
∑
m,l

[am K +
m − bm K −

m (−1)m−neiK −
m L

− am K +
m eiK +

m L + bm K −
m (−1)m−n]J, (9)

respectively. Above, the parameter J is defined by

J = Jm−n+2l

(
αk

h̄

)
Jl

(
r

2h̄ω

)
. (10)

We can eliminate the parameters rn0 and obtain

2qnδn0 =
∑
m,l

[am(K +
m + qn) + bm(qn − K −

m )(−1)m−neiK −
m L

− am K +
m eiK +

m L + bm K −
m (−1)m−n]J, (11)

and

2qnδn0 =
∑
m,l

[am K +
m − bm K −

m (−1)m−neiK −
m L

+ am(qn − K +
m )eiK +

m L + bm(qn + K −
m )(−1)m−n]J, (12)

respectively.
In practice, these equations need to be expressed in the

matrix form:

M0 M1 = M2 A + M3 B M0 M1 = M4 A + M5 B

M1 + Mr = Ma A + Mb B,
(13)

and the square matrices are defined by the matrix elements:
M0nm = 2qnδnm, Manm = J, Mbnm = (−1)m−neiK −

m L J ,
M2nm = ∑

l(qn + K +
m − K +

m eiK +
m L)J , M3nm = ∑

l[(qn −
K −

m )eiK −
m L + K −

m ](−1)m−n J , M4nm = ∑
l[K +

m + (qn −
K +

m )eiK +
m L ]J , and M5nm = ∑

l(−K −
m eiK −

m L + qn +
K −

m )(−1)m−n J .
The column matrices are denoted by the matrix elements:

An = an, Bn = bn, M1n = δn0, and Mrn = rno. From the

matrix equation, one can obtain the matrices of the reflection
amplitude and the coefficients of the wavefunction in the ring
region.

Mr = [Ma M−1
2 M0 − 1 − (Ma M−1

2 M3 − Mb)

× (M−1
2 M3 − M−1

4 M5)
−1(M−1

2 − M−1
4 )M0]M1 (14)

A = [M−1
2 − M−1

2 M3(M−1
2 M3 − M−1

4 M5)
−1

× (M−1
2 − M−1

4 )]M0 M1 (15)

B = [M−1
2 M3 − M−1

4 M5]−1(M−1
2 − M−1

4 )M0 M1. (16)

Based on the matrix Mr , we can get the total electron-reflection
probability R of one incident electron as

R =
∞∑

n=0

|rn0|2. (17)

3. Current density waves in the open mesoscopic
rings

With the above wavefunctions, the time- and space-dependent
current densities Jring(x, t) and Jlead(x, t) in the open ring and
lead could be easily calculated as

Jring(x, t) = eh̄

me

∑
m,n,l

km(|am|2 − |bm|2)J 2

− eh̄

me

∑
m,n,l

2π fd cos(ωt)

L
[|am|2 + |bm|2

+ amb∗
m(−1)m−nei(km+ 2π fs

L )xei(km − 2π fs
L )(x−L)

+ bma∗
m(−1)m−ne−i(km+ 2π fs

L )x

× e−i(km− 2π fs
L )(x−L)]J 2 (18)

Jlead(x, t) = eh̄q0

me

[
1 −

∑
n

qn

q0
|rn0|2 +

∑
n

(
1 − qn

q0

)

× 〈cos[(En − Ei0)t/h̄]{Re rn0 cos[(qn + q0)x]
+ Im rn0 sin[(qn + q0)x]} + sin[(En − Ei0)t/h̄]
× {−Re rn0 sin[(qn + q0)x] + Im rn0 cos[(qn + q0)x]}〉

]

(19)

where the Re rn0 (Im rn0) is the real part (the image part) of the
reflection matrix element. Obviously, these are wave behaviors
with ‘frequency’ ω.

Without loss of generality for numerical calculations,
we consider a single electronic wave incident from one
direction (for example, from the left to the ring) with a
fixed energy E = Ei0 = Efl [25]. For convenience,
the parameters in equations (6) and (7) are re-expressed as:
Lqn = π

√
2En/E0, Lkm = π

√
2(Efl + mh̄ω − r)/E0, and

r/(2h̄ω) = f 2
d E0/(2h̄ω), αk/h̄ = 2 fd

√
k2h̄2 E0/(meh̄2ω2) ≈

2 fd
√

EF E0/(h̄ω), respectively, and we also choose E0 =
h̄2π2/(meL2) as a typical unit of energy. Due to the fact
that integers m, n are infinite, we need to solve, in principle,
infinite equations relating to the infinite coefficients am and bm .
An appropriate upper bound may be given by the asymptotic
behavior of the Bessel function of large order [33], such as

Jv(z) ≈ 1√
2πv

( ez

2v

)v

, (20)
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Figure 2. Current density wave along the open mesoscopic ring:
(a) space-dependent current density Jring versus x for different
dynamic amplitudes of the flux: fd = 0.0001, 0.05, 0.1, 0.15 for
fs = 0.3, E = 0.6E0. The solid line in this figure shows that the
current density wave cannot be excited, if the applied oscillating flux
is sufficiently weak. (b) The differences between Jring(L) and Jring(0)
versus the amplitude fd of the applied oscillating flux. The other
parameters are taken as: t = 2π/ω, h̄ω = 2E0 and EF = 5h̄ω.

with e being the base of natural logarithm. If z < 2vc/e, where
vc is the cutoff order, the terms with orders higher than vc could
be neglected. The parameters fd and EF used in this work
are limited within the range αk/h̄ < 2, i.e. vc > [∼e] =
2. Since the above Bessel function is fast convergent, it is
sufficient to include terms up to v = 13 for the numerical
calculations [16, 17, 31]. The same upper bound is chosen for
the sideband index of the lead.

Typically, figure 2 shows how the current densities are
distributed along the ring driven by the time-periodic fluxes.
Obviously, for sufficiently weak oscillating flux, e.g. fd =
0.0001, the current densities at the different locations are
almost the same. This means that the excitation of the current
density wave is negligible. For the case with fd = 0.05 a
current density wave (dash line in figure 2(a)) with a seeming
‘wavelength’ L is clearly excited along the ring. However,
with increasing amplitude of the driven oscillating flux, the
space periodicity is broken. Figure 2(b) shows the differences
between the two sides of the junction Jring(L) and Jring(0) for
the different dynamic drivings. It is seen that, if the driving is
almost static: fd ≈ 0, then |Jring(L) − Jring(0)| ≈ 0. However,
for fd 	 0 we have |Jring(L) − Jring(0)| 	 0, which implies
that a net current is induced along the lead, i.e. |Jlead| > 0.
Physically, Jring(L) 
= Jring(0) is relative to the transitions
between the sidebands of Floquet energies of the electron in
the lead and ring. Those transitions should be enhanced with
increasing amplitude of the oscillating drivings.

Figure 3. Time-oscillating current densities in the lead for different
dynamic driving amplitudes. The parameters involved are:
fs = 0.3, E = 2.2E0, h̄ω = 2E0, x = 0, and EF = 5h̄ω.

Furthermore, figure 3 shows the exact time periodicity of
the current densities in the lead for the typical amplitudes fd of
the oscillating drivings. It is obviously seen that these current
densities have the same period T = 2π/ω as the applied
dynamic flux: fd cos(ωt). Also, it shows specifically that the
amplitude of the induced oscillating current density in the lead
increases with the increasing of fd. This is assisted by the
numerical results shown in figure 2(b).

4. Time average currents in the lead and the ring
with a single electron reservoir

We now consider the time average currents [34] over the time-
period T = 2π/ω along the lead and ring. First, with the
time- and space-dependent current density Jlead(x, t) we have

Ilead = 1

T

∫ T

0
Jlead(x, t) dt = eh̄q0

me

(
1 −

∑
n

qn

q0
|rn0|2

)

+ 1

T

eh̄q0

me

∑
n

(
1 − qn

q0

)
h̄

En − Ei0

× {Re rn0 cos[(qn + q0)x] + Im rn0 sin[(qn + q0)x]}
× sin[(En − Ei0)t/h̄]|T0
+ 1

T

eh̄q0

me

∑
n

(
1 − qn

q0

)
h̄

En − Ei0

× {−Re rn0 sin[(qn + q0)x] + Im rn0 cos[(qn + q0)x]}
× (−1) cos[(En − Ei0)t/h̄]|T0 . (21)

According to the Floquet theory used above, En − Ei0 =
nh̄ω, n = 0, 1, 2, . . ., we have T (En − Ei0)/h̄ = 2π/ω(En −
Ei0)/h̄ = 2nπ , and thus the above integration finally reduces
to the following dc form

Ilead = eh̄q0

me

(
1 −

∑
n

qn

q0
|rn0|2

)
, (22)

which is independent of the time and space variables.
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Similarly, the average current in the ring region can be
denoted as

Iring = 1

T

∫ T

0
Jring(x, t) dt

= eh̄

me

∑
m,n,l

km(|am|2 − |bm|2)J 2. (23)

It is emphasized that, when the dynamic part of the flux
is sufficiently small (and thus the static part of the flux is
dominant), the sideband transition between the lead and the
driven ring is negligible. In this case, only one sideband is
considered and the ordinary Bessel function J closes to unit.
As a consequence, the average currents along the ring and lead
reduce to

Iring = eh̄

me
k0(|a0|2 − |b0|2), (24)

and
Ilead = 0, (25)

respectively. These are assisted by the case where only the
static flux is applied [19].

Physically, the existence of the sideband transitions is
due to the oscillating flux drivings, and the electron could be
reflected back to the lead via multiple sidebands. Therefore,
the average currents along the lead and ring relate to the
reflection coefficient R in equation (17). In figures 4(a)–(c),
we plot the reflection coefficient R, the average current in the
lead Ilead and the average current along the ring as functions
of the static magnetic flux fs. It is clearly seen that when the
amplitude of the dynamic flux fd is sufficiently small, R ≡ 1
and Ilead ≡ 0. This implies that, under the weak dynamic flux,
the electron injected from the reservoir can not be transported
into the ring but will be reflected completely back to the
lead [19, 20], which results in the disappearance of the net
current along the lead. However, for significantly dynamic
drivings, the reflection coefficient R is no longer kept at unity,
and thus the average current along the lead might be nonzero.
This is because, by interacting with the applied oscillating
external field, electrons in the incident channel could emit
photons and then drop to the lower sidebands. Similarly,
electrons could also absorb photons and then jump to the higher
sidebands of the incident channel. The periodic property of
current in the lead on the static strength fs comes from the
periodic structure of the effective wavevectors: K ±

m = km ±
2π fs/L, with km being the wavevector of the mth sideband.
We also see from figure 4(c) that, for sufficiently weak dynamic
flux, e.g. fd = 0.0001, the average current along the ring shows
typical Aharonov–Bohm oscillation. With the increasing of fd,
the Aharonov–Bohm peaks are suppressed, as the electron of
the ring is scattered out to various sidebands of the lead by the
PAT process. Therefore, the time-periodic flux suppresses the
Aharonov–Bohm effect related to the usual static flux.

In figure 5, for the typical parameters E = 2.2E0, fd =
0.1 and EF = 5h̄ω, we discuss how the frequency of the
applied oscillating flux influences the average currents in the
lead and along the ring. It is clear that the amplitude of Ilead

(versus the static flux fs) decreases with the increase of the
driven frequency. On the contrary, figure 5(b) shows that the

Figure 4. The reflection coefficient R (a), the average current Ilead in
the lead (b), and the average current Iring along the ring (c) (in units
of I0 = eh̄/(me L)) versus the static magnetic flux fs. Here the
relevant parameters are taken as: E = 2.2E0, h̄ω = 2E0, EF = 5h̄ω.
It is clearly shown that when the amplitude of the dynamic flux is
relatively small, fd = 0.0001, R ≡ 1 and Iring ≡ 0, which is the same
as the phenomena of the ring driven by the static magnetic flux.
However, increasing fd makes the reflection coefficients and the
average currents in the lead have much more obvious resonance
owing to the stronger PAT process.

increases in the driving frequencies make the peaks of the
average current (versus the static flux fs) along the ring more
obvious.

5. Conclusion and discussions

In conclusion, we used the quantum waveguide theory
combined with the Floquet scattering theorem to investigate
electron transport along an open mesoscopic ring (with one
lead) driven by a time-periodic magnetic flux. We showed
particularly that a current density wave could be excited along
the open ring threaded by the time-periodic magnetic flux, and
a net current could also be generated in the lead connected
to only an electron reservoir. Basically, our numerical results
showed that the amplitude of the dynamic fluxes can modulate

5



J. Phys.: Condens. Matter 22 (2010) 185301 C-H Yan and L-F Wei

Figure 5. Time average current of the lead (a) and the ring (b)
affected by photon-assisted tunnelings for different driven
frequencies: ω = 0.6E0/h̄, 2.0E0/h̄, 3.7E0/h̄, 7.1E0/h̄, with
E = 2.2E0, fd = 0.1, and EF = 5h̄ω. It shows that the strong driven
magnetic flux suppresses the PAT process.

the photon-assisted process between the lead and the ring.
When the dynamic amplitude is relatively small, the electrons
with different energies are reflected back to the lead and the
current in the ring is not influenced. However, with the increase
of the amplitude of the dynamic flux, the reflection coefficient
could be less than unit. This is due to the interactions between
the transported electrons and the applied oscillating external
fields, by means of photon emissions and absorptions.

Note that superconducting quantum interference devices
(SQUIDs) [35] and ultrasmall mechanical cantilevers [36] have
already been successfully used to measure the weak currents
(e.g. a few nano-amperes) in the mesoscopic structures. For
the structure treated in the present work, one can choose
E0 = h̄2π2/(meL2) as the unit of an electron’s incident energy,
so the unit of frequency is ν0 = E0/h. Therefore, for the
experimental ring of radius R = 0.5 μm, one can estimate
E0 = 7.62 × 10−8 eV, ν0 = 18.42 MHz. In fact, with the
help of microwave resonators or wave guides [31], a time-
period flux with such a frequency can be easily applied to
the ring. Therefore, the current flowing along the lead can be
controlled experimentally. In addition, a potential application
of the model discussed in this paper is to design a switch to
control the current in the lead by modulating the dynamic flux
applied to the ring.
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[21] Büttiker M 1985 Phys. Rev. B 32 1846
[22] Shirley J H 1965 Phys. Rev. 138 B979
[23] Holthaus M and Hone D 1993 Phys. Rev. B 47 6499
[24] Fromherz T 1997 Phys. Rev. B 56 4772
[25] Li W J and Reichl L E 1999 Phys. Rev. B 60 15732
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